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Overview

This is a progress report for the first year of a three-year grant. It is organized as follows:
The overall nature and scope of the work is first described. We then summarize oriefly
progress made in several areas. Each of these areas is then explained in more detail in
papers. theses, internal reports that follow this brief overview. These latter documents are
self sufficient in containing the necessary background, introductions and references.
This grant involves continuing work in the a neural-net methodology for high-level vision.
We use an optimization approach and optimizing neural networks to perform the sorts
of combinatorial searchs that arise inevitably in high-level vision. The premise is that
high-level vision is in essence a matching process in which complex models are matched to
complex objects. By complex, we imply objects that are composed of many parts and have
many degrees of freedom. We are working on sev for these nonconvex problems (3) trying
this out on real objects (4. -_ firmer theoretical framework based on Bayesian principles.
Below we describe progress in three areas:

A learning algorithm was proposed and implemented for our graph-matching net-
works. Previously, models of objects were stored in the network by a simple hand-
design method. The new method allows for a supervised learning methodology for
storing the models. The actual networks use a combination of backprop and cluster-
ing to approximate curves that tend to attain significant values in localized regions
(i.e. learning bumps) The approach and experiments are described in a completed
thesis by Grant Shumaker, a copy of which is enclosed. This thesis also describes
numerical simulations in object recognition with an earlier proposed "Lagrange mul-
tiplier" network for constrained optimization.

" To date. our networks have been applied to artificial object dcmains and _ur focus
has been on theory and methodology. In a paper by Volker Tresp (this will appear
in NIPS-3), results in the recognition of real objects (machined parts) are reported.
Significant here too is the use of a continuation method ( two types of mean-field
annealing) that leads to much improved convergence and ability to escape local min-
ima. In one experiment, Tresp improves on a method proposed by Peterson and
Soderberg (IJNS vol. 1 1989) by incorporating more complex constraints into the
optimization method.

* Our networks perform a sort of weighted graph matching, but their design is heuristic
in several respects. In an internal report, Utans and Gindi describe a more pleasing
approach in which weighted graph matching exists as a form of Bayesian inference.
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Weighted Graph Matching as Bayesian Inference

Joachim Utans and Gene Gindi
Yale University

Department of Electrical Engineering
P.O. Box 2157. Yale Station New Haven, CT 06520

June 18. 1991

Internal Report - December 90

1 Weighted Graph Matching

Consider the following problem of pure grapih matching (see Figure 1). Given two graphs each

onsisting of N nodes, let a (I < a < N) index the nodes of one of the graphs, and i (I < i < N)
index the nodes of the other. Let G, be the adjacency matrix of one of the graphs,

1 if a and 3 are connected by an arc
0 otherwise

Likewise gii is the adjacency matrix of the other graph. A sparse match matrix {M i}, Mei E (0, 1),
of dynamic variables represents the correspondence between nodes a and i.

Graph matching then means to find a match matrix M that maps nodes in G,6 to nodes in

flij in a structurally consistent way; i.e. finding consistent rectangles (see figure 1). In a weighted

graph matching problem, arcs have numerical weights Wa, and wj attached; then the optimal
mapping also minimizes the difference of the weights of arcs connecting matched nodes.

2 Graph Matching as Bayesian Inference

The nroblem we are addressing here involves finding a match matrix M given the data graph gij

and the model information (the m ,de. g.-rph G ,,). In a Bayesian sense we want to find the MAP
estimate for the best Af given the data as expressed by Bayes theorem:

P{lig) = P(gjM)P(M)
P(Mlq)= , (2

mIm mm



G,4

Figure 1: Graph Matching: The circles represent graph nodes, the solid lines graph arcs and the
dotted lines matches between nodes in two different graphs. The nodes 1,2,3 and 4 form a consistent
rectangle.

Here, P(M) is the prior regarding a valid match matrix M and

P(g) = P(glM)P(M) (3)
M

a normalizing constant. Thus, we are left with finding an expression for P(glM). This can be

interpreted as finding the "forward" model (or grammar) that describes the generation of typical

data graphs assuming that we are given a valid match matrix M.

We proceed by assuming that arcs in g are generated independently and thus

P 'gkvf ) = flP(giil I )  (4)

This might not be a realistic assumptions for if g decribes an object it is more reasonable to assume
that there exists some correlation; for the moment we make this assumption for simplicity.

An arc gii will be present in the data graph if both, nodes i and j, get mapped to nodes & and
3 in the model graph. This means that elements Mi and .t i of M are both 1. In addition, nodes

a and beta must be connected by an arc G... Thus

P(gii = 11M) = MiMiG q (5)

where Mfi and Mqj are used as "switch" terms. Since gj2 can assume only two values,

P(gij = 01M) = 1 - P(gi = 11M) (6)

Gd in the mode graph can be given a probabilistic meaning: it is the probability that in a typical

instance g co"G a paiicular arc is present.
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For the match between model and data to be unique, .M1 must be a permutation matrix: , Ij E

[0, 11 and Fi Afj = 1, F_\ ij = 1. If Al is chosen from the domain of permutation matrices,

P(.\) would just be a constant (assuming uniform distribution). Here, we want to implement the

elements of Af as independent match neurons and therefore have to spec'fv, the prior distribution
in such a way that valid permucation matrices are more likely than others:

-A ,( , ,-1)2-B _02, ,-) ,,
P(M) = e_1 F-) (E

NN hich is a Gaussian approximation to the ideal distribution

P (-1) 11 (E m', 1) 6 (E .11', 1) )
ij i j

Now. the final distribution is given by

P(A19.) a II Af[i\A 3jG e _' - A E, (E ' Nf A-Ii)
2 -B .(Z' k -1) 2 (9)

ij

3 Extension to Weighted Graph Matching

Here, the arcs in the data graph gij have weights wij attached; in the "forward" sense, we therefore

want to compute

P( w, i1) = S P(uo1 gi3 ,M)P(gIM) (10)
{g,, }

where the summation is taken over all values gij can assume, i.e. 0 and 1. Next we define

P(uij Igij, Al) = { 7,w) e- if gi = 1
if gi, = 0

or. using gij as a -switch" term

P~wj~g1 , ~i) Iq-J- (W ,-Mc,,Msw,, )2 (2P (% I,g i , ,A f ) = gi "  (/- o w 1 2 )

This expression states that if there is no arc 9ii in the data graph then there can be no weight

Irij: otherwise, the weight is determined by the model (Gaussian distributed with mean Wad and

variance a,,). Thus,

P(w'i3 I M) = gj e(gi = 1Im) (13)
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which allows us to use the results from the previous section. For weighted graph matching we thus
ohbtain
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A Neural Network Approach for
Three-Dimensional Object

Recognition

Volker Tresp
Siemens AG, Central Research and Development

ZFE IS INF2, Otto-Hahn-Ring 6, 8000 Mfinchen 83

Abstract

This poster presents a model-based neural vision system. Scenes are described
in terms of shape primitives and their relational structure. The neural network
matches the primitives in the scene and the primitives in a model base by finding
the best agreement between primitives and their relational structure under the
constraint that at most one primitive in the model base should be assigned to a
primitive in the scene. The quality of the solutions and the convergence speed
were both improved by using mean field approximations. 'Ihe approach was tested
in 2-D and in 3-D object recognition. The primitives are line segments derived
from edges in the scenes. In the 2-D problem, the recognition is independent of
position, orientation, size and slight perspective distortions of the objects. In the 3-
D problem, stereo images are used to generate a 3-D description of the visible (not
occluded) portions of the objects in the scenes. The scene description is matched
against objects in a model base. The best match identifies the correct models and
using the information obtained in the preprocessing step, the 3-D positions of the
objects can be determined.

1 Introduction

Many machine vision systems and, to a large extent, also the human visual system are
model based. The scene is described in terms of shape primitives and their relational
structure and the vision system tries to find a match between the scene description and
'familiar' objects in a model base. If the scenes are acquired with a single camera and the
objects are flat or always viewed from the same perspective, the problem is essentially
2-D. It is often required that the recognition be invariant to rotation, translation, scale
and slight perspective distortions. This can be achieved if solely parameters invariant
to those transformations are used in the recognition system. In this paper, a system
is described in which shape primitives are line segments derived from the edges iu the
image. The scene is described in terms of the relations of line segments, e.g. the angles
between line segments and the logarithms of the ratios of their lengths. In the approach
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Figure 1: Match of primitive pto pi.

presented here, a neuron is assigned to every possible match between primitives in the

scene and the model base. The network is designed to find the best match between the

scene description and the model base under the constraint that at most one primitive

in the model base is assigned to a primitive in the scene description.

If the problem is intrinsically 3-D as in many robotics applications, the vision system

should capture the true 3-D structure of the scene. Using the sensory information

available, a 3-D description of the scene must be generated which can then be compared

to 3-D descriptions of models in the model base. In this approach, this information is

gained from two stereo-images and the correspondence problem must be solved first.

Only part of an object is visible at any one time which in general will only permit

a 3-D description of that portion of the object. In this poster, we describe a neural

network approach that offers an elegant method to handle the uncertainty in the 3-D
scene description and solves both the correspondence problem and the model matching

task.

2 The Network Architecture

The activity of a match neuron mc represents the certainty of a match between a

primitive p, and in the model base and pi in the scene description. The connectivity

of the network is most easily described by the network's energy function where the

fixed points of the network correspond to the minima of the energy function. The



November 23, 1990 - 21:52 DRAFT 3

/
- oc(' /! S 7

= /

0

///

Figure 2: Definitions of r, q, and 0

Figure 3: The function p4).

energy function in the system described here is the sum of several terms. The first
term evaluates the match between the primitives

Ep = -2 /2 X,im 1 . (1)
as

The function ait is zero if the type of primitive P, is not equal to the type of primitive pi.
If both types are identical, oi evaluates the agreement between parameters pP,(k) and
pf(k) which describe properties of the primitives. Here, r, = I(Ek pIp(k) - pi(k)I/ ork)
is maximum if the parameters of Pa and p match (Figure 1 3).

A direct comparison of the primitives is not sufficient. The evaluation of the match
between the relations of primitives in scene and data base is performed by the energy
term [3] Es = -1/2 2 X , "a" (2)

a,a,i~j

The function Xat = jA(Eh pa(k) - p (k)j/ar ) is maximum if the relation between pa
and po matches the relation between pi and pj.

The primitives can be interpreted as nodes in a graph and the relations between
the primitives as labeled arcs. Seen in this way, the network solves a graph matching
problem (1, 7, 6, 8].

Depending on the application, uniqueness constraints may have to be satisfied.
These can be incorporated as additional (penalty-) energy terms. For example, the
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constraint that a primitive in the scene should only match to one or no primitive in the

model base (column constraint) can be implemented by [6)

Ec Z[( m,) - 1)' 1:m,]. (3)

EC is equal to .ero only if in all columns the sum over the activations of all neurons is

equal to one or zero and positive otherwise.
If neurons are employed that can take on continuous values (m 2 E (0, 1)), an

additional term is helpful that encourages neurons to assume values close to zero or

one
EB = Z mQ.(1 - mn,). (4)

as

2.1 Dynamic Equations and Mean Field Theory

2.1.1 MFA1

The neural network should make binary decisions, match or no match, but binary
recurrent networks get easily stuck in local minima. A higher probability of reaching

a lower local minimum can be obtained by using the mean field approximation of
statistical physics. Here, the network is interpreted as a system of interacting units. If

such a system is in thermal contact with a heat reservoir of temperature T the system

will be in a state S with the probability

e-E(S)/Tz()

where
Z = - E s )  (6)

is the partitioning function of the system and E(S) is the energy of the system in state

S.
Such a system minimizes the free energy

F = E - TS (7)

where S is the entropy of the system. At T = 0 the energy E is minimized. Equation 5

indicates that states with low energy are more likely but since there are more states

accessible with a higher energy the system is with a high probability dose to the mean

energy FS E(S)e-E(S)/T/Z.
Bad local minima can be avoided by using an annealing strategy but annealing is

time consuming when simulated )n a digital com u1 :er. Using a mean field approxima-

tion one can obtain deterministic equations by retaining some of the advantages of the

annealing process [5, 4, 2].
The mean field theory gives a good approximation for a highly interconnected net-

work with many neurons. The theory works under the assumption that the change in

energy of the system if one neuron changes its state is approximately equal to the change
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in energy of that neuron in the field at its location. The mean value vat =< mat > of
a neuron becomes

vat = 1( ( E 1 x e-E(S)/T + 1 0 x e- E (S )/ T )  (8)7 S S,m 1=1 Sm --0

x X1ea ' / T  1
euas/ T + e -0 /T 1 e - ua,/T (9)

with

OE (0uai = - (10)

Equations 9 and 10 can be updated synchronously, asynchronously or solved itera-
tively by moving only a small distance from the old value of ua, in the direction of the

new mean field

U =(t) = uai(t - 1) + [-d( _ 1) , - 1)1. (11)

At high temperatures T, the system is in the trivial solution vai = 1/2 Va, il and
the activations of all neurons are in the linear region of the sigmoid funtion. 'The
system can be described by linearized equations. The magnitudes of all eigenvalues
of the corresponding transfer matrix are less than 1. At a critical temperature T, the
magnitude of at least one of the eigenvalues becomes greater than one and the trivial
solution becomes unstable. T, and favorable weights for the different terms in the
energy function can be found by an eigenvalue analysis of the linearized equation1 [51.
MFA1 is equivalent to the mean field theory of spin glasses [4].

2.1.2 MFA2

It is also possible to obtain mean field equations which assure that at every temperature
T, the column constraint is met. One considers only states S in which exactly one
neuron in every column is equal to one and all others are equal to zero or where all
neurons in a column are equal to zero. Under the mean field assumption

x euas/T

with 
E(13)

The column constraint term (Equation 3) drops out of the energy function. The high
temperature fixed point corresponds to vai = 1/(N + 1) Va, i where N is the number
of rows. MFA2 is similar to the mean field theory of Potts glasses (5].
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3 Applications

3.1 2-D Object Recognition

There are many vision applications in which one spatial dimension can be neglected
and the object recognition problem is essential 2-D. Figure 4, 6 and 7 Fkows typical
objects presented to the recognition system. The task was a recognition of the objects
in the scenes independent of scale, translation, rotation and small distortions. The
primitives are line segments that approximate edges in the scene. As preprocessing
steps, the images are threshholded to separate objects from background. A convolution
by a Laplacian followed by another thresh.holding operation extracts the edges. Edges
are found typically at the outer contours of an object or at features inside an object,
typically at holes (inside contours). A contour is traced with a simple contour following
scheme. The angle 0' which the contour forms in relation to a horizontal line is plotted
versus the arclength of the boundary transversed s. Corners of the object correspond
to maxima and minima of the smoothed first derivative doi/ds and line segments are
formed by connecting two successive corners. Contours found within another outer
contour are considered an inner contour of the same object (Figures 5, 6, 7 )

A single line segment can be described by position, orientation and length. Since
none of these parameters is invariant under the transformations mentioned above, a
direct comparison between the parameters of the primitives is not feasible and Ep = 0.
The description of scene and models is encoded in only the relations between line seg-
ments. Here, only relations of line segments within a local neighborhood are considered.
Xa,ij is equal to zero if not both

* line segment p, is attached to line segment po and

* line segment pi is attached to line segment pj.

Otherwise, X,',ij = - ' k/ + raO - rjI/a) where .0 is the angle between
line segment and r the logarithm of the ratio of their lengths (Figure 2).

The energy terms Es, Ec and EB are weighted by 1, 2, and 0.1, respectively, if
MFA1 was used. If MFA2 is employed, the energy function consists only of Es,
weighted by 1.

3.1.1 Experiments

The model base consisted of 6 different industrial objects which were typically described
by 10 to 30 line segments each. The recognition was tested on scenes with a single object
in varying scale, position, illumination and orientation. If the illumination allowed a
clear separation between background and object, the preprocessing stage segmented
the pieces into line segments in the same way as the corresponding pieces in the model
base were segmented with variations on the extracted parameters 0 and r depending
on precisely where comers were found. The recognition of the objects was always
successful and all line segments matched correctly within about 20 time steps. The
network successfully found the correct match even if the data base consisted of two
models where one model differed only in one parameter from the other model.
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In one scene, all six pieces were present. A total of 81 line segments were matched
correctly in about 20 time steps. When the illumination became less uniform, the
separation between background and object was not completely possible with simple
thresholding. If the segmentation of a contour of an object was correct, that is the
same as in the model base, 0 and r varied up to 15 degrees and 20% respectively but
the line segments were matched correctly demonstrating the distortion insensitivity of
the system. If portions of a contour were segmented incorrectly, the line segments
in that portion were not matched, but the line segments in the correctly segmented
portion of the contour were matched correctly. If the model base consisted of all 6
pieces, the line segments in the incorrectly segmented part of the contour were often
matched to line segments in the wrong model. Therefore, with large data bases, the
image quality should be sufficient to allow a correct segmentatIcz.

The recognition was tested on partially overlapping pieces. If a sufficient number of
line segments in the contour of each piece could be segmented correctly, these line seg-
ments could be matched and object recognition was successful here as well (Figures 8).

3.2 3-D Object Recognition

3.2.1 The Correspondence Problem

As before, images are segmented into line segments. In the scene in Figure 9, these
lines correspond to the edges, structure and contours of the objects and shadow lines.
To solve the correspondence problem, corresponding lines in left and right images have
to be identified. A good assumption is that the object in one image is a distortion and
shifted version of the object in the other image with approximately the same scale and
orientation. Therefore, the lengths I of line segments are compared, tr, = p(Ila,-l i/af)
and the angles 0 and attachment points q between adjacent line segments are compared,

= - +lq.0 - q illo ) (Figure 2).
Here, we have two uniqueness constraints: only at most one neuron should be

actlve in each column or each row. The row constraint is enforced by an energy term
equivalent to EC

ER =Me, 1)2 M,]. (14)
a i

Figure 10 shows the line segments and the matrix of match neurons after 10 itera-
tions. All line segments that are present in both images could be matched. One of the
legs of the wardrobe was only segmented in the right image and has no correspondence
in the left image. Only MFA2 was employed for this problem. Es is weighted by 1,
ER by 10 and Ep by 0.1.

3.2.2 Description of the 3-D Object Structure

Next, a a 3-D description of the visible portion of the object must be generated. As
result of the last section, we know which endpoints in the left image correspond to
endpoints in the right image. In the experiments, the two cameras were mounted i4
parallel. If D is the separation of both cameras, f the focal lengths of the cameras,



November 23, 1990 -21:52 
8RF
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Figure 5: Segmentation.
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Figure 6: Varying image quality.
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Figure 7: Overlapping workpieces.
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Figure 8: Network converges to solutions. Fat line segments are matched correctly.
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Figure 9: Stereo images of a Scene.
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Figure 10: Stereo matching network.
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Or, y, 1,9 YI the coordinates of a particular point in left and right images, the 3-D
position of the point in camera coordinates z, y, z becomes

Df (15)
Xr - XI

v = zr/f (16)

z = zZ,./f+D/2 (17)

Knowing the true 3-D position of the endpoints of the line segments, the system
concludes that the chair and the wardrobe are two distinct and spatially separated
objects and that line segments 12 and 13 in the right image and 12 in the left image
are not connected to either the chair or the wardrobe. On the other hand, it is not
obvious that the shadow lines under the wardrobe are not part of the wardrobe.

3.2.3 Matching Objects and Models

The scene description now must be matched with stored models describing the com-
plete 3-D structures of the models in the data base. The model description might be
constructed by either explicitly measuring the dimensions of the models or by using
several stereo views of the models.

Here, . and X are the same as in the correspondence problem. Note, that here
0 is not a very discriminating parameter since 0 ;Z 90 degrees for many pairs of line
segments.

The knowledge about the 3-D structure allows a segmentation of the scene into
different objects and the row constraint is only applied to neurons relating to the same
object 0 in the scene ER' = Zo E-[((EiEo M-0 - 1)2 iro v-i].

Here, Es is weighted by 1, ER, by 20 and Ep by 1. Figure 11 shows the network
after 20 iterations. Except for the occluded leg, all line segments belonging to the chair
could be matched correctly. All not occluded line segments of the wardrobe could be
matched correctly except for its left front leg.

4 2-D and 3-D Position

4.1 3-D

A translation followed by a rotation can be described by

ys r21 r2o r23 dv vo (18)
z, r31 r32 r33 dz Zo

1 0 0 0 1 1

or in matrix notation X. = RXo. The Equation 18 has to hold for all pairs of points
X0 = (z0, yo, zo) in standard position and Xs = (z,, yo, z,) in scene coordinates.

The optimal solution (in the least squares sense) for R is

= XIX P (19)
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Figure 11: 3-D matching network.
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where X P is the pseudo inverse of Xo. The coefficients of Rpt can also be obtained
using three ADALINEs as shown in Figure 12.

If the first rotation is about the x-axis by 7, followed by a rotation about the y-axis
by 3, followed by a rotation about the z-axis .

= arctan -r3 (20)
r11 + r2l

a = arctan r -  (21)
r11

7 = arctan r32 (22)
r33

For the chair in Figure 9 one obtains dz = -3.8 cm, dyj = 4.8 cm, dz = 62.9 cm,
7 = -12 degrees, 3 = -36 degrees and a = 15 degrees (in camera coordinates).

4.2 2-D

Scaling, translation and rotation can be described by:

X, Acosa -Asina dx x
Y = A sin a A cos a dy YO (23)

0 0 1

or in matrix notation

Xt = RX0  (24)

The coefficients of R can again be derived using the pseudo inverse or an ADALINE.

5 Convergence and Comparison of the Two Mean Field
Approaches

In the 2-D problem, both mean field approaches MFAI and MFA2 were used; in the
3-D problem, only MFA2 was used. In general, both mean field approaches converged
to the same solutions.

If MFAI was used, the network was updated using equations 9 and 11. The
experiments suggest that there are two critical temperatures: the first when the system
leaves the trivial solution v.j = 1/2 Va, i and starts to enforce the column constraint
and the second one when it departs from a solution where all neurons have similar and
small activation to the binary solution with only one neuron active per column.

Ec is a penalty term that is introduced to implement a constraint that should
be strictly enforced. But unfortunately a large weight Cc for Ec leads to an ill-
conditioned Hessian matrix. In practice this means that EC describes a narrow ravine
and the system zig-zags up and down the slopes without making much progress in the
perpendicular direction. Also small time steps have to be taken to avoid oscillations
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Figure 12: ADALINE for calculation of R.

and instabilities. For these reasons, in some experiments we started with a small Cc
and increase it gradually ever time. In the experiments, Cc increases exponentially and
the step size decreases exponentially. The initial value of Cc is scaled by 1/c. Through
this approach convergence speed could be increased. The network started out slightl.,
above the second critical temperature and annealed from T = 0.8 to T - 0.4.

When using MFA2 update equations 12 and 11 were used. Since the energy surface
is more favorable, larger time steps can be caken and the net converged much faster
(5 - 10 times) to a solution without getting into oscillatory states. The annealing-.
started at T = 0.05 and was stopped at T = 0.03.

6 Discussion

The experiments showed that the system recognizes objects robustly and reliably. The
system relies on the correct identification of line segments and their relations in the

scene in the preprocessing stage. More elaborate approaches must be used if the scenes
become more complex and edges more ambiguous. Edge detection and reliable contour
following can be increasingly difficult.

In the 3-D problem, a hierarchical system can be considered. In the first step,
simple objects such as squares, rectangles, and circles etc. are identified and these form
the ptimitives in a second stage to recognize complete objects. It is also possible to
combine these two matching nets into one hierarchical net as described in [3].
Acknowledgements
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An objective function for model-based object recognition is formulated and used
to specify a neural network whose dynamics carry out the optimization, and hence the
recognition task. Models are specified as graphs that capture structural properties
of shapes to be recognized. In addition, compositional (INA) and specialization (ISA)
hierarchies imposed on the models as an aid to indexing and are represented in the
objective function as sparse matrices. Data are also represented as a graph. The
optimization is a graph-matching procedure whose dynamical variables are "neurons"
hypothesizing matches between data and model nodes. The dynamics are specified
as a third-order Hopfield-style nctwork augmented by hard constraints implemented
by "Lagrange multiplier" neurons. Experimental results are shown for recognition in
Stickville, a domain of 2-D stick figures. For small databases, the network successfully
recognizes both an object and its specialization. Learning of recognition parameters
is implemented through the use of a modified back propagation network.
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I VISION 5

1 Vision

1.1 Goals

The 'oce ,f vision may be forhiwlated as an iifurmatior-pkoccssion task. The ,i!t,

processing apparatus may be relegated to a isolated black box, with a defined input,

in this case a visual scene, and a desired output, the information which is contained

within the scene. To formulate the problem in this manner, however, immediately

raises fundamental questions about vision. What is the nature of the visual scene

used as input? Is it a simple intensity display, does it contain information concerning

depth, texture, motion? What is the desired output? Is it simply a catalog of all

objects recognized within the object and their positions? This has been a goal of

industrial computer vision. Or is the goal to obtain some kind of understanding as

to the relationship of objects within the scene; an understanding of the image rather

than a processing of the image.

Goals may also be viewed as a hierarchy which emphasize different aspects of the

visual process. Object advoidance is important, but may not lead to an understanding

of the visual scene. More complex goals may be to extract edge information, charac-

terize objects in the image, or understand their relationship. Additionally, goals at

the more complex level may be created by the visual information presented.

A second consideration in vision is in the hardware that is used to implement the

visual algorithms within the black box. The nature of an information-processing task

suggests, but does not require, particular constraints on the equipment used to process

the information. Parallel hardware and algorithms are well suited to processing the

vast amounts of information in the initial processes of vision. These constraints direct

the search for algorithms used to process the information in the task. Therefore, to
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understand and characterize any information-processing task, you must study the task

as it is accomplished by a particular configuration of equipment used to implement

it.

1.2 Psychophysical and Neurophysical studies

One approach to studying visual systems is to disregard what is known about human

vision. This approach may indeed have advantages, such as ease of implementation

and in industrial applications. However, what is known about the process of visual

understanding comes from human vision. It stands as proof that visual understand-

ing is both possible and practical. It provides both a starting point and a working

example.

Drawing on previous psychophysical studies of vision, various investigators have

proposed algorithms to model limited aspects of perception. Some of the psychophys-

ical studies investigated the binocular nature of vision. Bela Julesz devised random

dot stereograms which created an illusion of depth perception [26]. Such investiga-

tions show that depth perception does not need to depend on information such as the

identity of more complex objects, but rather can proceed solely on pattern matching

alone.

Roger Shepard and Jacqueline Metzler investigated the psychophysics of pattern

recognition [27]. In their experiment, they presented subjects with groups of line

drawings of simple block objects. The presented objects differed by rotation and/or

mirror inversion. They found that recognition time varied directly with the amount

of rotation difference between the images.

These psychophysical studies provide information about isolated modules that the

human visual apparatus uses to identify information contained within scenes. They
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direct the search for algorithms toward ones that react in the same manner as observed

experimentally.

A second approach taken was that of neurophysiological studies of retinal cells

[28]. Barlow studied th, ganglion cells of the frog retina. Such ganglion cells were

monitored as their receptive field was stimulated, noting which responses activated

the cell. Such cells, when stimulated by an appropriate visual stimulus, often invoked

a feeding response in the frog; the frog would jump toward the stimulus and snap its

mouth. This response is important, for it shows that, at least in the frog, a large

degree of information processing has occurred at the level of the retina, and at the

level of a single neuron. These observations lead Barlow to state:

The cumulative effect of all the changes I have tried to outline above has
been to make us realize that each single neuron can perform a much more
complex and subtle task than had previously been thought. Neurons do not
loosely and unreliably remap the luminous intensities of the visual image
onto our sensorium, but instead they detect pattern elements, discriminate
the depth of objects, ignore irrelevant causes of variation and are arranged
in an intriguing hierarchy.

This lead to perhaps an overstatement of Barlow,

A description of that activity of a single nerve cell which is transmitted
to and influences other nerve cells and of a nerve cell's response to such
influences from other cells, is a complete enough description for functional
understanding of the nervous system. There is nothing else "looking at"
or controlling this activity, which must therefore provide a basis for un-
derstanding how the brain controls behaviour.

The ability to monitor the signal of individual neurons lead investigators to trace

the behavior of neurons at successivly deeper neural levels. Hubel and Wiesel studied

the nature of neurons receptive fields at the level of the visual cortex of the cat,

finding organization into functional columns [35].

These statements directed neurophysiological studies for the following decades. In-

vestigators searched for cells containing 'units' of information. Gross, Rocha-Miranda,
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and Bender found cells in the inferotemporal cortex which were activated when a hand

was present in the visual field [29]. They were a stepping stone on the way to finding

the elusive grandmother cell, a cell that is activated when one's grandmother comes

into view.

The psychophysical and neurophysical studies were useful in describing the ob-

served behavior at a cell or an individual level, but were only that. They did not lead

to an understanding or and explanation of the process of vision.

1.3 Artifical visual systems

Artifical visual systems have simplified the problem by dividing the visual process

into low level and high level vision. The term low level vision is used to describe the

extraction of basic information from the visual scene. It is the ability to characterize

luminosity, depth, color, texture, and depth perception. It makes generic assumptions

about the information being processed, and is iconic in nature. One specific example

is in extracting shape information based on shading of objects within the scene. This

information provides an intermediate representation of the visual scene suitable for

high level visual processes to work.

One distinguishing feature of high levw, vision is that it emphasizes contextual

knowledge, i.i. matching to exprected models, as opposed to low-level vision, whose

processing is iconic, uniform and simple.

Artifical visual systems have been created to implement selected aspects of the

visual process. Several different approaches have been taken to achieve this goal. The

first is to try to improve the low-level visual information being extracted from the raw

image. This approach, for example, tries to improve the performance of edge-detector

operators that are applied to the raw image. This approach leads to the generation
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of sets of lines or other image information which are used to describe the image.

The next step or goal of the process is in how to use this information to generate

information about the actual content of the scene. If the initial scene is limited in

scope, such as a collection of toy blocks, then there are defined algorithms to generate

one from the other.

An approach by Waltz achieves this by cataloging all possible verticies contained

within the image [32]. By examining the type of vertex, and by grouping sets of

vertices together according to the edges with interconnect them, it is possible to fit

an object or limited set of objects to the edge information.

Several groups have extended this type of "catalog" approach to images with

contain non-convex polyhedra [31]. Waltz has also extended this approach by the

addition of shadows [32]. These programs are able to examine groups of possible

vertices, eliminate those which are spurious (due to shadows, object overlap) and

label the remaining vertices, objects, and planes. They do so at the expense of a

combinatorically expanding catalog of possible edge and vertex tables. The idea of

using a stored model of a shape to assist the recognition process was introduced by

Roberts [30], in a computer program that produced edge descriptions of images built

with cubes and wedges.

Such approaches rapidly break down, however, for more complex, realistic imagery.

The approach is also inadequate when image information is incomplete, or possibly

inconsistent.

1.4 Computational Theory

David Marr has formalized the vision problem by casting it as an of information

processing task [18]. In doing so, he separated the problem into three distinct levels



I VISION 10

which, while independent, interact. The separate levels are a) computational theory,

b) representation and algorithm, and c) hardware implementation.

The first, computational theory, concerns the abstract goals of the process to be

achieved. It formally states the desired transformation to be achieved. With regard

to stereopsis, the goal is to extract the notion of depth from the scene. The details

of how the extraction is to occur is not specified at this level.

Th, second level concerns representations and algorithms. The same information

may be represented in many different forms. This representation may be tailored to

suit the desired transformation, and may vary at different steps in the processing task.

Some examples of the representation of visual information are gray-level intensity

images and semantic networks of related objects within the scene.

The second level also concerns the algorithms used to implement the desired trans-

formation specified in the first level, and how these algorithms interact to share in-

formation. The algorithms and the representation of the data are intimately coupled.

The algorithm for longhand multiplication is straightforward when the numbers are

represented in a base ten system, but quite difficult when the data is represented in

Roman numerals. The algorithms in a visual system are the programs which attempt

to extract information, such as edges, from the visual data.

The third level concerns the details of the hardware upon which the algorithms are

to be implemented. The hardware may range from electrical transistors, connected

in serial or parallel configurations, to the biological neurons.

The levels are loosely linked. The set of algorithms available are, to an extent,

constrained by the nature of the hardware available. Similarly, there is ambiguity

as to which level a task must be assigned. At what level should neuropsychological
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phenoma be assigned, at the detector (hardware) level, or at an algorithm level, or

does it arise from an interaction between levels? Additionally, the level at which

various tasks are processed may shift with the changing nature of goals, algorithms,

and hardware.

Within this multi-level context, it is possible to roughly separate the contributions

of the various fields. Psychophysics may be loosely linked to the level of information

representation and the algorithms applied to it. Different visual algorithms fail in

markedly different manners when pushed to extremes. These failures observed in

psychophysics may help guide the search at the algorithm level. Neuroanatomy more

closely applies to the hardware that implements the algorithms and stores the repre-

sentations.

This approach allows one to analyze why various visual systems fail. Systems may

fail because their goal was limited (level 1), the algorithms or data representations

are not flexible enough to allow the goal (level 2), or the hardware is not appropriate

to the task (level 3).

2 Recognition

One of the processes that a visual system must achieve is the recognition of objects

observed in the visual field. The recognition may be described as occurring at several

levels, starting from information provided by the low level visual processes. Object

recognition is a process of constructing an abstract description of the data, so that a

small amount of information (e.g. a "car") can effectively summarize a large amount

of data (e.g. millions of bits comprising the image of a car) for purposes of high-level

reasoning.
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One method of accomplishing recognition is to decompose an object into its parts,

and solve the problem by recognizing the parts. The matching is relational in that

recognition is contextually dependent on the disposition of other parts. In fact, the

grouping of image data into parts and the matching of these parts must usually

proceed simultaneously and interact with each other. Such recognition processes must

function when limited information is available, such as when shadows or occlusion

obscure parts of the image.

2.1 Matching

The process of recognition consists of matching the observed part within the image

to a stored database of known objects. Such internal descriptions of objects may

concern what are thought to be important information about the object, such as size,

color, texture, shape, or other available information.

What remains is to match the observed object to the list of internal descriptions

available. Problems arise, however, in that several objects may partially fit, creating

confusion. One approach often taken is to limit the input objects or the description

parameters so as not to create the confusion of overlap.

Another possible approach is in extending the scope of the matching process of

an individual object to encompass the matching of other objects within the scene.

This is often possible since other objects within the scene contain information which

may bear upon the recognition of the original object (a head may help to recognize

a hand instead of a paw). In doing so, an additional level of matching is uncovered,

that of matching groups of internal descriptions to possible groups of objects within

the scene.

A limit is placed on the combinatoric nature of the memory by separating obects
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into their constituent parts. Multiple objects may be created from a limited number

of constituent parts, and recognition then becomes a two level process. The first is in

recognizing the limited number of parts. and the second in matching a group of the

parts to groups of parts in the image memory. These two levels may interact to help

the matching process of the other.

2.1.1 Hierarchy

Models may be organized into hierarchies in order that large numbers of objects may

be stored in the database. Two types that are useful are compositional hierarchies

and specialization hierarchies. Compositional ("part-of") hierarchies impose specific

top-down restrictions on the combinations of low-level elements which need to be

considered, thus reducing search cost. Specialization ("type-of") hierarchies reduce

work by allowing incremental recognition. To do recognition, the vision system must

dynamically find groups of parts in the image whose internal relations satisfy the

definitions imposed by the stored models in the parts hierarchy.

2.1.2 Invariance

A goal of a recognition system applied to a nontrivial domain is that it must recognize

patterns and objects regardless of simple transf, rmations such as translation, rota-

tion, scaling, and perspective. The recognition should be able to operate with partial

information of the object, and should be able to recognize a large number of objects.

It is desirable to avoid a visual memory which achieves this latitude by separately

storing every conceivable view of every object to be recognized.
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2.1.3 Irvariant parameter matching

Matching may be approached through parameter matching. Invariant aspects of the

objects or groups of objects may be used to construct a list of parameters describing

each object or collection of objects. Matching then becomes a table lookup problem

to recall the label associated with the set of parameters. Such approaches must decide

what are the invariant aspectn of objects which are used to generate the parameters.

2.1.4 Parameter optimization matching

The internal images may be stored not as objects but as mathematical functions

describing the image, with a set of tunable parameters. Matching may then proceed

by fitting the parameters to the observed objects. This can be used when there is a

known object to be found. though it may vary from the internal object due to size

or rotation. These techniques work well when the input data objects bel , to a

limited set of known objects, and the degrees of variation are limited. This technique

has been employed by Marr and Nishihara [33] in matching articulated collections of

cylinders to match observed data.

2.1.5 Graph theory

Matching problems may also be formulated in terms of graph matching. The inter-

nal description of a group of objects may be viewed as a relational graph structure

containing the objects as vertices which are connected with arcs, describing some re-

lationship between the parts. The arc may be used to describe a physical connection,

such as the object arm is connected to the cbject body. Such objects are termed

graphs.
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If the object contained within the scene is also described in terms of a graph,

then the recognition process at the top level consists of matching the input graph to

a set of stored graphs. The matching used is broken down in the graph matching

field into that of a) graph isomorphism: matching graph A to graph B with a one-

to-one relationship, b) subgraph isomorphism: matching graph A to a subgraph of

B, and c) double subgraph isomorphisms: matching subgraphs of A to subgraphs of

B. Again, the problems are complicated by the possibility of missing or extra parts,

and the addition of the notion of 'goodness of fit' parameters which may regulate the

matching of nodes of the graphs.

One aspect of graph matching which is not immediately apparent is that of the re-

quired compitational complexity of the algorithms. Most graph matching algorithms

are known as NP-complete, all known solutions require a computational power that

is, at worse case, exponential in relationship to the size of the graphs needed to be

matched. This exponential nature of recognition is not observed in visual psychophys-

ical studies. Indeed, scenes with detailed information are often recognized faster than

scenes with less detailed information.

3 Artificial Neural Networks

Artificial neural networks are collections of computational units, termed "neurons,"

which are interconnected. The computational units perform a specified transforma-

tion of their input(s) to their output. Input values may also have "weighting factors"

associated with them. The derived output then becomes the input for some specified

set of other neurons. Styles of networks vary according to the actual transformation

performed by the neurons (binary, linear, sigmoidal) and the nature of the intercon-
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nections (layered, symmetrical,complete). One model we have used is the Hopfield-

style analog neural network [2]. This model uses a sigmoidal transformation function

and has symmetrical interconnections. Starting values and interconnection weights

are set, then the neural network is allowed to "relax," seeking a stable state. The

output is the set of final resting output values of the neurons.

We have chosen to implement the recognition algorithms in the form of opti-

mization of objective functions implemented in neural networks. Objective functions,

which specify how graph matching is to occur, are attractive ways to formulate vi-

sual algorithms. Such formulations are concise, being expressible in several lines of

algebra. Notions of hierarchy are easily incorporated in objective functions.

An additional advantage of objective functions is that they may be emulated

in function by a Hopfield style analog neural network [2]. Solving the objective

functions becomes a problem in optimization theory: finding a solution consists of

finding minima of the objective function. Analog neural networks may be designed to

achieve this objective, with the additional advantages of error tolerance of both the

hardware and of the data, and the advantage of learning abilities of neural networks.

3.1 Learning

Learning may be viewed as the process of modifying a pre-existing response so that it

better fit a desired response to a stimulus. Learning may occur when the stimulus and

the desired response are known. It then becomes a matter of adjusting, via a learning

algorithm, the internal parameters which control the response. Generalization of the

learned response occurs when the modified algorithm is applied to new input data.

Separate from the process of recognition is the process of learning. Learning in

vision systems may consist of adding new objects to the stored image database, or
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modifying the parameters of already stored images. Learning may also consist of

extracting abstractions from groups of items. The nature of neural networks allows

learning to occur, although the process of learning a database is more comple: than

in applying that information. Specifically, we concentrate on learning to discriminate

match metrics that characterize individual models, fine-tuning the image recognition

process.

Experiments by Hurlbert and Poggio [21] have shown that neural networks are

capable of learning a color algorithm. Using optimal linear estimation to synthesize

the algorithm and a large paired set of input and desired output images, they were

able to train a neural network to perform a "lightness algorithm." Interestingly, the

learned algorithm resembled a "lightness algorithm" previously proposed by Land [34].

One limitation of the learning algorithm employed is that the derived algorithms are

strictly linear in nature, which may not be a valid assumption of the desired algorithm.

Another approach to learning in neural networks is the back-propagation learning

algorithm. The neural network model consists of an input layer, an output layer, and

possibly intervening layers. Training vectors consist of an input pattern and a desired

output pattern. For each training vector, an error signal is generated between the

desired output and the actual output, and this signal is propagated from output to

input to reduce the error signal. One advantage of this algorithm is that it operates on

neurons with nonlinear output functions, thereby allowing the learning of non-linear

algorithms.

The back-propagation technique has been applied to the task of deriving a shape

from shading visual algorithm. Curvature is a basic property of objects within a

visual scene. Shading of objects depends on multiple factors, such as illumination,



3 ARTIFICIAL NEURAL NETWORKS 18

orientation, and curvature. Various analytical processes exist to obtain the curvature

of an object in an image from the observed shading. Sejnowski and Lehky [23] have

shown that it is possible to train a neural network to extract curvatilre information

from shading information. They used a three-layer neural network and applied the

back-propagation technique using a training set of 2000 images of parabolic surfaces.

One interesting aspect of this experiment was that the "neurons" of the hidden middle

layer of the neural network specialized in their fuctions, with regard to orientation of

curvature and the sign of the curvature.

3.2 Combinatorial optimization

Many of the algorithms used in recognition are combinatorial in nature. Computa-

tional time to solve the problem increases exponentially in respect to the size of the

problem to be solved, and must be overcome in order to construct practical visual

recognition systems.

A highly abstracted version of graph matching has been used by Hopfield and

Tank to solve the travelling salesman problem (TSP) [3]. Simply stated, the goal is

to find the shortest path connecting a set of points, with the constraint that every

point be visited only once. Such a problem is easily restated as an objective function.

and the problem becomes one of minimizing, or optimizing, the objective function.

Tank implemented the objective function with analog style neural networks. Such

networks, while not usually finding the best answer, quickly find quite good solutions

to the problem.

Shown in Figure 1 are two graphs. We may represent a graph by a sparse binary

connection matrix whose ijth element is unity if node i is connected to node j,

and is zero otherwise. The two graphs shown below are represented by symmetric
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connection matrices G, and gij. A matching matrix Mei, where 0 < M, < 1, of

dynamic variables, which we call "match neurons", represents the correspondence

between nodes a and i of the two graphs to be matched. The M,; are elements

that make decisions. Their activation determines whether a is matched to i (M,

activated) or not matched (Mi not activated.) M,, neurons are analog, and may

assume any value between 0 and 1. These intermediate values, obtained when the

neural network has not reached a stable state, are the strength of the hypothesis chat

a and 1 are matched.

M51

M 22

G ap g ij

@0000
00000

a000.0

00000
00000

i

Figure 1: An illustration of a graph matching problem

Parts being matched form local consistency rectangles [7]. Such a rectangle con-

sists of a pair of G-linked model nodes connected by their respective match neurons
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M to a pair of g-linked data nodes. An example of such a rectangle is illustrated

in Figure 1, consisting of the series G5 2 M22 g21 M51. A consistency rectangle is a

structure that supports matching based on contextual evidence. For example, the

match M, between node 5 in G and node 1 in g is enhanced because both nodes

have similar neighborhoods (nodes 2 in G and 2 in g) and the neighbors themselves

match (M22 = 1). A simple objective (or energy) function maximizes the number of

consistency rectangles by rewarding the activation of such collections:

E( M) = - E E Gagi.iM j.
010 ij

Versions of this objective function for graph matching have been proposed by Hopfield

[15] and von der Malsburg [16]. This may be understood as follows: given a connection

between a and 0 and a connection between i and j, the global energy term may be

minimized by strengthening M a and Mij. The M neurons represent a possible

correspondence between pairs cr and pairs ij. Without any limiting constraints,

such a term merely maximizes the total number of consistent rectangles.

Other terms are necessary to reflect the constraint of one-to-one matches between

model nodes and data nodes, limiting the proliferation of consistency rectangles:

(E M, - 1) = 0
ar i

' "i - 1) =0
i .2

These may be understood as follows: the sum of M neurons connected to any particu-

lar a (or i) must equal unity. If the M were to assume binary values, then these rules

require that each a (or i) be matched to one and only one i (or a). Such constraints
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may be expressed as penalty terms in an objective function and summed:

E(M) = c1 Z(Z M,,i - 1)2 + c, Z(Z Mai - 1)2
a ii a

Another term is used to encourage the match neurons to assume binary values:

E(M) = E M,,i(1 - Mai).
ai

This term is minimized as each Mi approaches 0 or 1. Another term that is used in

Stickville is the analog gain term [2]:

E(M) = JMQ'g-1(x)dx

g(x) = 5(1 + tanh(x))

where g is a sigmoidal gain function. Such a term acts as a barrier to prevent the

allowed range of M from being exceeded by increasing the energy needed to approach

the edges of the range. In a discrete simulation of an analog neural network, this has

the effect of reducing the step size as the edge of the boundary is approached.

In Figure 1, the match matrix is depicted as a 2-D array of match neurons (circles)

whose values are proportional to the radius of the shaded region of circle. The solution

depicted, a 1-0 permutation matrix, satisfies the various constraints and is consistent

with an optimal matching of the two graphs shown in the figure.

As shown in [21, such objective functions specify the connection weights and biases

for a network of neurons Ma,. Suitable dynamics, discussed in later sections, may be

specified so that the network evolves to find a local minimum of the objective function.
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The dynamics approximate a gradient descent on the energy surface created by the

constraint functions. The gradient descent is distorted by the barrier terms near the

boundaries. A discussion of the effects of the barrier term on the network dynamics

may be found in [9].

3.3 Varieties of Neural Networks

The details of implementation of neural networks differ with respect to the behavior

of the individual neuron (binary, analog, linear, nonlinear), the nature of connections

between neurons (complete interconnections, layered approach, directed), and the

selection of learning algorithms used. We have chosen to use Hopfield-style analog

networks with the neurons using sigmoidal output functions.

4 A Simple Domain: Stickville

We attempt recognition in Stickville, a simple domain of connected assemblages of

directed linear "sticks", each possessing a base and tip [4], as shown in Figure 2.

Ambiguity exists only for the initial root data stick, the first point entered being

defined as the base (circle at end of stick in Fig 2). All other sticks have their base

located on their parent stick. In Stickville, we abstract objects by main parts, i.e.

designated sticks defined in the model base. Thus a plane is abstracted by a single

main part fuselage. The parameters of fuselage become the parameters of plane.

Data is represented by a sparse connection matrix ina whose value is unity if stick

i is connected to stick j. The matrix ina is a symmetric matrix, with inai = inaji.

This is done to allow any part to assume the role of a local root stick, thereby

becoming the main part. Models may then match to a connected subset of a connected
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assemblage of sticks in the data base. In such a case, a jet may be recognized even

though it is attached to a runway, which is not in the model base. A parent data

stick may be connected to many offspring data sticks, but each data stick must have

only one parent data stick. This requirement disallows the sharing of a common data

stick between two parent sticks. For example, a wing may not be attached to two

planes. Thus each connected assemblage of sticks in the data forms a tree structure.

Appended to each connected stick pair is a set of three parameters Pj = (rij, Oil, q1j)

that measure, respectively, relative size, angle, and location of the attachment point,

Figure 2(c). Relative length rj is defined as log(Lent, with the range [-0, + c].

The relative angle Oi, is defined as the positive acute angle separating ij, the allow-

able range being [O,ir/2]. By this definition, Oil = Oi. There is some ambiguity in

our definition of 0, since stick j may assume 4 orientations with respect to stick i,

all having the same O~i . The relative attachment point qij is defined as the fractional

distance in terms of i from the base of i that the base of j is attached. The allowable

range is [0, 1]. For the case where stick i abuts stick j, then we set qi3 = 0. The P5

are presumed precomputed for the input data set.

Models are specified in a similar manner (Figure 2(b)). A sparse binary matrix

IN4 is unity if model stick 0 is "part of" model stick a. For Stickville, the IN4

matrix encodes a tree structure (no shared parts). The matrix INAA is not symmetric,

unlike Mai. This is because the root part is presumed known, as is the order of

hierarchy from parent to offspring sticks. Implicit here is the abstraction of a collection

of parts to a single main part. Thus several stick models constituting an "airplane"

may have a single stick, "fuselage", as a main part. This is shown in Figure 2.

Appended to each INed model pair is a parametrized function F(,,(,) that
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Figure 2: Definitions in Stickville.

specifies how well the parameters of a stick pair ij fit requirements for models a and

3. For Stickville, F was a simple quadratic that assumed a positive value of unity for

good matches and negative values for bad matches. For example, for relative size,

Fuseagewing( P4,) = (1 -(r4,1 - r uslage,wing )Ofum lage,wing ))/(Z INfuselage,,)
0

where rluselagewing is the nominal best value (entered by hand) and O'uelage,wing is the

allowable variation for the relative size. For the simulations reported, o was a constant

independent of a and 3, with (o,., o, 0q) = (1, r/2, 1), respectively. The different o,

scale their respective F values, allowing them to be summed and expressed as a single

value. The INA term in the denominator normalizes F,,3 with respect to the number

of model parts, allowing models with differing numbers of parts to compete equally.

The functions F are hand designed, but one might suspect that F or possibly its

parameters could be learned from training examples [9]. Learning the database itself

would be a much more difficult problem [10].
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5 From Graph Matching to Model Matching

The objective function for maximizing consistency rectangles may be modified simply

to incorporate the "quality of fit" as measured by F(P):

E(M) = - 1 E IA,31naijM, AM0jF,e(fj).
CV3 ij

We refer to this as the "rectangle rule." Figure 3 represents such a consistency

rectangle in Stickville, with the match neurons depicted as circles. If a stick pair

iJ fits well with model pair ac3, thus having a positive F,(/,j), the energy term

favors this a3ij rectangle, strengthening both M~i and M3j. For bad fits that have a

negative F3( 1 3,), the proposed rectangle raises energy and is discouraged, weakening

both Mm and Mj. As in the case for exact graph matching, the rectangle rule must

be supplemented by additional "syntactical" terms.

M

Oi e i  
Stickvil

INA 3 F P. inai Rectan

Model Data
side side

Figure 3: Stickville Rectangle.

Since the syntactic objective functions used in Stickville are somewhat baroque, it

is instructive to first consider a series of related simpler problems and express appro-
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priate obj tive functions for these. A single-level Stickville problem, i.e. one whose

data term is linear in M rather than quadratic as in the rectangle rule, consists of

the optimal selection of a permutation matrix, directed by the fit constraints which

select the best match between graph parts. This is known as a linear weighted match

problem, and appears in combinatorial optimization as the Task Assignment Prob-

lem. For this problem., we assume an equal number of parts and models and hence

a square permutation matrix. In Stickville, the permutation requirement enforces

unique matches from each model stick to each data stick. The driving energy term

in such a problem is to pick the best combination of such selections, such as the

minimum total, while still satisfying the permutation matrix. In Stickville, the mini-

mization seeks the closest fit between parts. An example of a minimized permutation

matrix is shown in Figure 4, where the entries are numerical fits.

N!

10 9 6

6 5 6

15 2 10

20 30 8

Figure 4: Minimized Permutation Matrix.

A single level Stickville network is shown in Figure 5. In the diagram at left, the

LA links are shown as lines connecting model node a to various child nodes 3; the

ina links are shown as lines connecting parent stick i to offspring sticks j. Possible

matches are shown as lines connecting model and data nodes, with match neurons

(circles) sitting on the lines.

To retain Stickville context, we show a possible high-level match M,,j, but if this
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is fixed at unity, then the problem reduces to the linear weighted match problem of

optimally assigning all child parts 3 of parent a to all child sticks j of parent stick

i. That is, if MIi, IN)A3 , and inai, in the rectangle rule are fixed at un;ty, and fits

F,,3(/,) now depend only on 3 and j (e.g. becomes Fo,), then the rectangle rule

becomes an objective function appropriate for the Task Assignment Problem:

E = - 13 F,

The dynamical variables are M3,. depicted as a match matrix. Three candidate

matches are shown. The left figure depicts all nine possible matches as the lower

parts of rectangles. Stickville requires a one-to-one matching between model and

M.ai

Local Match Matrix

@00
~060
000

MJ

Figure 5: A single level Stickville matrix.

data parts, namely, that each model stick match one data stick, and that each data

stick match one model stick. In addition, each neuron should approach a binary value

at the solution. The row and column constraints needed to enforce these rules may

be expressed as:

= 0
I



5 FROM GRAPH MATCHING TO MODEL MATCHING 28

2

(,3l - l)M21 = 0

In this case the binary selection rule is not strictly necessary since the problem is one

of linear programming. In such a case, the best answer to the solution is guaranteed to

be at one of the boundaries, where M2I3, are 0 or 1, and a linear programming algorithm

finds it. (Indeed, the use of the binary constraint may be counterproductive since it

encourages the search of the solution space only near the boundaries.)

A morf'- difficult case irvolves trying to match unequal numbers of model and data

sticks, illustrated in Figure 6. where .Ai and the ina and IN matrices are again held

at unity. The linear version of the rectangle rule is still the same, but the syntactical-

constraints now differ. The permutation matrix is no longer square, and either some

model or some data sticks will not match. In such cases, a constraint is needed to

allow the columns or rows to sum to either 0 or 1. For the row and column constraints

above, the equations become:

( I2- )M,= 0

(ZMbj-1)E M2. = 0
3 3

Figure 6 shows the appropriate rectangular match matrix and a possible solution.

The left figure depicts all twelve possible matches as the lower parts of rectangle

structures. Experiments show that when the above constraints are expressed as third-

order penalty terms, globally correct matches are almost always obtained for small

(5 x 14) matrices.

We may now escalate the problem by reintroducing dynamic matches M , of
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M i edLocal Match Matrb

0000

0000

M j

Figure 6: An illustration of a local match matrix /3j

parent sticks and models, and hence reinstating the rectangle rule. First consider the

case, depicted by Fig 5 but now with dynamic Moi, with one parent and equal numbers

of sibling parts and models. If we demand reasonably that a sibling match confidence

equal that of the parent match, then the row/column constraints previously listed for

Fig 5 become:
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V IN43M,3 j - inaiMoi = 0

1:zinajM j - INA,0M,, = 0
I

The first of these says that several model parts competing for one stick must have

activations equal to the parent match. The second of these constraints states a similar

constraint for several child sticks competing for the same model. The ina, INA terms

act as "filters" to ensure that this competition takes place among the correct set of

competing neurons. (One could imagine a much larger set of neurons than that shown

in Fig 5, for example, with the ones depicted being a localiy connected, by ina and

L\4, subnetwork.) Of course, there may be competing parent matches, (many a and

i instead of one). The proper generalization of the constraints above becomes:

ZIN4A 1 3.- Znai1Af~, 0
3 i

Z inajM3, - Z IN4a 3M, = 0

Full Stickville incorporates both object-part relations and matches between un-

equal numbers of model and data sticks. The row and column rules above are thus

modified to ones that are actually used in the following Stickville simulations:
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(_IN,cM0j - inaiM ,i)(1Z INA,0M,3 ) = 0

(Z2i a, i j - Z_,INAa Mo,)(Zinaji ,) = 0

The binary rule is necessary to help suppress local minima within the solution space,

since the problem is no longer one of linear programming. Strictly, the binary rule

should be held as a hard constraint, though in the simulations presented here adequate

performance was obtained using it as a penalty term.

The preceding constraints were of second-order, with respect to Al. To be ex-

pressed as additive penalty terms, they must be expressed as a third-order expression.

This is shown for the row constraint actually used in Stickville:

E = (E IAAM3 - naii,,)2(j: INA.M0.1)

The column constraint is expressed similarly as:

E = zinajjJV10 - 1: IN4,,A1Mi)'(Z inajM 32 )

The energy curve of such a third order neuron is shown in Figure 7. Here we

plot E vs. Mj for a single Alej and IN4, ina set to unity. The horizontal axis is in

fractional units of Mi and the vertical axis is in arbitrary energy units. The neuron

has the tendency to seek the minima at either 0 or Mi. Since M,, is itself changing

dynamically, the minimum at M,,i shifts dynamically.

Without a driving force, such a Stickville network will be satisfied with all M at

ground state, M = 0. A constraint is needed that requires the activation of matches
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o M

Figure 7: An illustration of a third-order energy curve

consistent with the minimum number of sticks and models. Such a rule may be

expressed as:

(E INA,3ina,3NMj - KMi) = 0

where K is the minimum number of unique matches between model and data sticks.

Note that K may be precomputed and need not be determined dynamically. As a

penalty term, we may simply square the above expression.

In the simulations presented here the recognition of Stickville figures is not penal-

ized for extra parts. They simply do not contribute to any of the energy or constraint

terms. There is a penalty, however, for missing parts, since the F 1 (P1 ) objective

function is normalized by IN4. It is possible to modify the constraint terms to pe-

nalize model matches that have additional parts, if it is assumed that an extra part

should detract from the quality of match.
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6 Introduction of a Specialization Hierarchy

Indexing into a large database of models may be made efficient by the introduction

of a specialization (IS,) hierarchy. Efficiency is achieved by inheritance of objective

functions; work done in matching a parent model need not be repeated in match-

ing a specialization of that model, unless a restriction of parent model parameters

is included as part of that specialization. The figure below shows a specialization

hierarchy for a set of models in Stickville. Specialization is achieved by narrowing

the allowed ranges of parameters between parts, and by the addition of new parts.

Thus, in the figure below, a plane model becomes a jet model by narrowing the wing-

fuselage angle so that the wing is swept back. In a Idition, the jet model contains

engines and elevators not necessary for the plane model. For the Stickville simulations

presented here, we tested only the case where the addition of new parts was required

for specialization. The energy functions here are general, however, and handle both

cases.

We define a fixed sparse binary matrix IS4, whose value i. nity if model 0 is a

spccialization of model a. Our IS4 matrix forms a tree structure. Models are defined

as the entire subset of model sticks that uniquely comprise a figure, such as a jet.

Thus, in Figure 8, I4plaeet = 1 and clearly I54planehorse = 0. The IS4 matrix is not

symmetric.

6.1 An Objective Function for Specialization

The matching matrix and the specialization (IS4) matrix may be combined simply: if

an assemblage i of sticks matches a model a through the matching matrix, then the

matches between the assemblage and each of the model's specializations is enhanced.
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I Root ISA

+Plane - Mammal Mammalhead

Propplane Jet Giraffe Horse

Figure 8: Typical Specialization hierarchy for Stickville

Furthermore, the specializations 03 compete, on the basis of detailed structure not

present in the general model a, to become the unique specialized match to i. The

original match between a and i remains. Thus, the intent is to have the specialization

hierarchy serve also as a discrimination tree.

Figure 9 illustrates: model a matches stick i. The matches of sibling models 3

and 3' to the same stick are enhanced, but only to the level of the parent match Mrj.

They also compete with one another; the sibling that finds greater support from its

parts eventually wins. In steady state, the match Mi and only one of the other two

matches to i remains. The structure can also illustrate "bottom-up" indexing. If one

of the sibling matches, say Mnj, is on, then the parent match M , becomes active also,

if it had been initially set at a low value. This bottom-up aspect does not correspond

to the usual notion of a discrimination tree.

A constraint that achieves all of these effects, while retaining the possibility of no

match, is the term

(E IS4,0M n, - M~,)(Z IS4,0 nMni) = 0
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It is not necessary to normalize this function since collections of model sticks compete

as models, not individual sticks. If the latter were the case, it would be necessary to

normalize the competition rule to allow for equal competition between models with

different numbers of parts.

a

Figure 9: IS4 specialization structure

The interaction between INA and IS4 is captured in an "IS4 INA" diamond. An

example of the ISA INA diamond structure is shown in Figure 10. A consistent

rectangle structure is formed between plane, wing and the data sticks (only two data

sticks depicted here), as well as between prop, prop wing and the same data sticks. If

the plane and wing sticks match, then the specializations prop (for "propellor plane")

and prop wing are encouraged by the ISA energy term. Verification is ensured by the

prop - prop wing - stick - stick rectangle.

6.2 Competition between Groups of Sticks

An alternate form of IS4-competition was experimented with. Instead of match-

ing individual sticks to model nodes and organizing ISA-1NA as in the "diamond"

structure, we may match collections of ina-connected sticks directly to collections of

INA-connected models as shown in the example in Figure 11.
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Plane

Prop -

INANa

INA 
I na

Prop wing M

Figure 10: IS4 INA structure
Models, which we call r-models in this alternate scheme, are indicated in caps,e.g. PLANE, and are composed, as shown, of INA-connected models of the formersort. r-models are connected by RIS4 links, defined again as sparse binary matrices.An r-model matches an r-stick, which is a labeled collection of connected individualsticks. r-stick 7 is composed of sticks 16- 33- 44 in the example shown. The index ofr-sticks ranges over all connected assemblages in the data. Matches are representedby neurons R,, (instead of M,) where the indices of R now range over r-models andr-sticks. The diamond organization is gone, but the triangle competition remains:

(E RIS4R - Ri)( RIS4,) = 0

Our motivation of RIS4 vs IS4 comes from results of experiments, described in detail
in Section 8.

The new quantities may be defined in terms of the old ones unambiguously. Let irange over all sticks that comprise r-stick i' and / range over all models that comprise
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Figure 11: RISA hierarchy

r-model pA'. Then,

Also, RISA may be determined from ISA. Let a range over models comprising r-models

a' and /3 range over models comprising r-model 13'. Then if

IS4 = 1, RIS4,, = 1. (2)

For example, if I54wtng,prop wig-"1a in the diamond figure, and wing, prop wing are

elements of r-models PLANE and PROP, respectively, we conclude the RIS4 pLNEPROp =

1.

7 Unconstrained Optimization with Hopfleld Nets

Constraints can be conveniently reformulated into the framework of unconstrained

optimization using additive "penalty" terms. This is the approach used by Hopfield
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in the TSP [2]. For example, the constraint of sibling competition discussed above

becomes the additive term,

c(Z IS4.,Mj - Mi)2 (Z IS4M.)Mj )

where c is a coefficient that determines the strength of this penalty term. The minima

of this term coincides with the desired constraint. A major difficulty with such penalty

terms is in the selection of c. A larger c enforces the constraint more rigidly, but at

the expense of other penalty terms.

Dynamic variables are identified with neurons, and the connection weights are

specified by the objective function. Hopfield [1] has shown that descent to a local

minimum of the objective function follows from the equations of motion,

dual OE
dt OM .i

M = g(uo,)

where g is the sigmoidal mapping between M and an internal state u.

8 Constrained Optimization with Hopfield Nets

Unconstrained optimization problems offer the advantages of simplicity and the ability

of direct implementation in Hopfield networks. In certaip situations, they possess the

advantage of seeking compromises between constraints. However, they possess the

undesirable properties of not exactly satisfying the original constraint, needing to

find suitable weighting factors in relation to the other constraints, and undesirable

convergence rates as the constraint strength is increased.
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It is possible to solve the constrained problem exactly using the method of La-

grange multipliers [5]. Hard constraints may be expressed in the form h = 0. A

network implementation is possible [6] where the Lagrange multipliers A are them-

selves neurons. The equations of motion are,

dM-yk _ h , E A hi

dt (9VIk i " (3)

dA, i has(Ak) (4)

dt

where now we use double subscripting ai to index hard constraints h i and associated

Lagrange neurons A . The term E includes the objective and remaining penalty

terms.

A gradient ascent is performed on the Lagrange neurons, while a steepest gradient

descent is performed on M [6]. The method may be modified slightly to ensure

positive definiteness and convergence around the minima [6]. The method allows the

constraint h(M) to be held exactly at the solution point and also relaxes the selection

of constraint strengths.

As stated above, the constrained optimization equations have no provision for

the analog gain "barrier" term. A slight modification leads to a constrained form of

Hopfield dynamics:

du.,k E A hi

dii aMs

d,

M-yk = g(ulyk)

One practical consideration is that each of our penalty constraints may be writ-
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ten as a sum of (at most cubic) monomial terms. The sums determine connection

weights between neurons, but no new neurons need be introduced even if there are

many terms in the sum. On the other hand, reformulation with Lagrange multipli-

ers requires one Lagrange neuron for each term in the constraint sum, leading to a

proliferation of Lagrange neurons. For objective functions with a limited number of

constraints, such as the ISA fanout rule, the overhead of additional Lagrange neurons

and connections is manageable. For objective functions with multiple constraints,

such as the binary-value objective function, a Lagrange neuron is needed for each

match neuron. Such a requirement doubles both the number of connections and the

number of neurons. Depending on the expense of implementing connections and neu-

rons, which itself depends on the neural network implementation method, such a cost

may be prohibitive. On the other hand, it could be argued that the network already

has O(N2 ) neurons for a database of O(N) parts or models, so a doubling due to

Lagrange neurons is not relatively expensive.

Stickville was implemented using Lagrange neurons to enforce the IS4 fanout rule.

This use of Lagrange neurons led to a modest increase in the number of neurons and

connections in our simulations. In this case there is one hard constraint for every

occurrence of IS4 sibling competition as in Figure 9. The hard constraint demands

that at the fixed point, one or none IS4 siblings shall be on (equal to the activation

of parent), and all of the others off (equal to 0). We may index the constraint by the

indices of the parent neuron ai and thus write the constraint as:

h ,(M. k) = h..(M,,, IS4 siblings of M,)= (Z IS4,aM3, - M,)(_ IS4,oMo,) = 0

(5)

The equations of motion then become:
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duk _ E OhI"

dt 7ONM, k AMk

dAc,:
dt - (1Z IS4,oM 3I - Mcj)(Z: ISLOM0)

13 13

M.k - g(uk)

where,

Ohc, = (2 IS4,13A! 3 i - -1i )(E IS4Z ) if A-,ik # Al,

0M.1 k 1 3

O h , - = IS a 3t4 , if M k = M .,

= 0 if Mk neither child, parent of ai

A similar constraint may be formulated for the RIS4 links. By analogy with Eq. 5,

it is,

hcry,'k') = hyy(Ra,j, RIS4 siblings of R, 2') = (Y RIS4c,, R,-R ,,)(- RIS4c,3, R3,,, )
03'1

By Eqs 1 and 2, the above constraint may be re-expressed in terms of the dynamical

variables M. The equations of motion follow analogously rom Eqs 3 and 4.

Let primed quantities ao' index r-models and RIS4 links, and let i' index r-

sticks. Also let the corresponding unprimed quantities (a,,3,i) index elements of

models, sticks that comprise the correct r-models, r-sticks. Then we may write hafi'

in terms of match neurons:

hy(M) = ( IS4 3 Ma, - E M.,)(Z IS4AMjcM) = 0
QE3& ,,iI e3a

itd' 303
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From the form of the constraint, it is seen that entire groups of neurons compete

rather than individual IS4-siblings.

The equations of motion become:

du-,k _ _ E A h

dt Oa.\l-Mk -y a AL k-

= (E E- ISA4,3M - E MLi)(_ E IS4.Af3 i)
dt t
7F3 ift' tict,

M4 = g(uk)

where,

if Af-'k*M.'o=(2Z ISA0 M,3W. - Z:MQ:)(Z:MJt(Z 1:I43 QIC

Oeo iisQfZ Q~at woQ ift!

2 'i" Of3' 3cf X

a h , if M .,= ,,
O~ll., E E -  IS4, 0AM3i ,',i'

aAI'k Ofa

23X

-ck 0OMf=k

The above dynamics are complicated, but may be understood more easily with

the aid of Figs. 9 and 11. In Fig 9 individual neurons that match the same stick

and are also IS siblings compete via the constraint h, of Eq 5. Strictly speaking,

the constraint would be satisfied if the sum of the neurons equaled unity, but other

constraints force one (or none) siblings to the value of the parent neuron and the others

to zero. In Fig 11, the RQ,,, neurons represent the sum of a large cross product, i.e.

Rai, = ,, Mm. The sibling cross products Roy compete as sums. Now, other

constraints force (i) all neurons. M in all cross products to zero except for one cross
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product and (ii) the correct subpermutation within the winning cross product. As

seen in the next section, the latter method with r-models often led to more successful

results.

9 Implementing Learning

Up until this point the "fit" function F,, has been a prespecified function. It is a

function which encourages close matches, and discourages mismatches. For Stickville,

F took the form,

Ffuse1ageuing(P4,I) - (1 -((r 4 .1 - ruseagewing)Ia)2)(Z IN4uaelage,3)

where a was a constant value. What this equation states is that variation of a part of

the data compared to the model is judged by a predetermined notion of good fit. In

addition, the same rule is applied without variation to all data parts. This limitation

may be removed by employing a family of parameters ai3 , though again the set of

parameters is predetermined. An additional limitation of this equation is that it is a

unimodular function, generating only one maximia. If we desire that F is capable of

matching two or more discrete examples ( e.g. an acute angle and an obtuse angle)

then F is required to be a multimodal function.

A more desirable solution would be to learn the individual variation rules from a

series of training data. The training data would be labelled as a "good" or "bad" fit

and allow the neural network to adjust the specific multimodal F .

To implement the learning algorithm I have used a modified back-propagation

technique [36]. We wish the untrained network to reject all matches by producing a

near-zero output. Trained positive examples should produce a near-one output, sig-
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IA
Figure 12: Gaussian output function

nifying a good match. Examples within the local neighborhood of a positive example

should produce an intermediate response (0,1) which rapidly tails off towards zero as

the difference is increased. Since the desired output function on a local scale can be

approximated by a Gaussian function, the output function of the individual neurons

composing the learning network were chosen to be a Gaussian function of the form,

f(x) =

This generates a Gaussian function centered on A, with a width determined by r7, and

a magnitude determined by w, as shown in figure 12.

Back-propagation techniques are usually applied to networks with monotonic (e.g.

sigmoidal) output functions only. Moody has shown that similar equations may be

applied to networks with hidden-layer Gaussian neurons [37]. These networks retain

the gradient-descent nature of the back-propagation networks.

A neural network may be created with an input neuron i, a set of Gaussian

neurons in the hidden layer j, and a sigmoidal output neuron o shown in figure 13.

The sigmoidal output neuron is used to limit the total output of the network and

maps its input to output through the equation:

f8 (x) = -(1 + tanh(x))
2
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Output Layer

Hidden Layer

Input Layer

Figure 13: Gaussian neural network

The input to this network is a parameter between an INAed pair of model parts

a3 and a matched inaed pair ij. The desired output is the function F,,. Training

pairs consist of an observed parameter and whether that is allowable (output 1) or

not allowable (output 0). A back-propagation technique is used to reduce the error

signal generated at the output by adjusting the parameter w. The parameters q/, A

are adjusted with reference to the input data to obtain an optimum clustering of the

hidden layer neurons.

Within the learning subnetwork each hidden layer neuron j generates a Gaussian

output. The aggregate output for a group of hidden layer neurons j takes the form:

net = Z Wo e - nj (X- A )

where w1 o is the weighting parameter between hidden layer neuron j and the output

neuron o. This output then becomes the input net for the single sigmoidal output

neuron o.

The learning networks are designed with several hidden layer neurons in order to

fine tune the output function F. Parameters Wjo, 77, A exist for each of the hidden

layer neurons j, where o is the output neuron.

The application of the back propagdtion equations involves two phases. The first



9 IMPLEMENTING LEARNING 46

phase consists of presenting an input to the network and propagating it forward to

compute the observed output o, and the generated error signal between the desired

output and the observed output. The second phase consists of a backward pass

through the network, propagating the error signal through each layer of the network

while modifying the neuron parameters to reduce the error signal.

The basic back propagation equation to modify w takes the form:

Aw'V = 1 6o2,

This equation states that the weight w between any units x,y should be changed

by an amount proportional to the error signal by at the receiving neuron and the

output of the sending neuron ox. I is a parameter that adjusts the rate of learning.

The parameter is chosen to allow a resonable rate of learning while avoiding the

possibility of oscillation of the network with large values of 1. For weights between

the hidden layer neurons j and the output neuron o, the equation takes the form:

Awji o = lIoOj

The determination of the error signal starts at the output layer. For neurons in

the output layer, b takes the form:

, = (to - oo)f,(neto)

where f,(neto) is the derivative of the activation function which maps the total input

net, of a neuron to its output value, in this case the derivative of a sigmoidal mapping

function. The term (t. - oo) is the difference between the desired output and the

generated output for a given input pattern.

In order to limit the response of the hidden Gaussian neurons to achieve local

responses, the last equation is modified to the form:
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6, = (t, - o,)f,(net,)f3 (net,)

This equation, graphically displayed in Figure 14 favors local responses while sup-

pressing non-local responses. In the figure, the closer Gaussian response is modified

in preference to the remote Gaussian response.

The previous equations adjust the magnitude of the Gaussian neurons to match

the test data. The equations to modify the offset and width of the Gaussian involve

a feed-forward approach to adjust q, A of the hidden neurons. For A, the error term is

the difference between the input parameter x and the individual neurons A's. Changes

in the A,'s are again gated by the response of the individual Gaussian neuron to the

input, f(x), or equivalently, f(net). The equations for -7 are similar in nature. The

equations are:

A = 163

6j= (x - Aj)f;(x)fg(x)

A = 16:

6j = (x - ?77 (X)ff(x)

10 Experimental Results

A set of selected experimental results from Stickville appear in Figures 15 through 22.

For the following simulations, analog neural networks were digitally simulated, using

discrete time steps. The forward Euler method was used to simulate the differential

equations.
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SI

Figure 14: Gaussian function

10.1 Non-Learning Results

In the following examples, the IS4 fanout rule is enforced as a hard constraint, the La-

grange neurons appearing as "Lagrange IS4 Constraints." The additional constraint

functions, such as binary values and one-to-one matching, are handled as additive

penalty terms. While the performance of the network was sensitive to the initial

selection of the penalty weights, the weights did not need to be adjusted to solve

individual problems. The penalty weights used in the following simulations were:

row, column rules = 1

binary value ru*'e = 1

total activation rule = 0.1

rectangle rule = 5

analog gain term = 1

Unless otherwise noted, the network simulations were started with the MO. set to

small random values on the range [.01, .03].

In the simulations depicted in the figures, there is one Lagrange neuron per IS4

structure. The leftmost neuron refers to the IS4 structure higher up in the hierarchy.
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We note that the Lagrange neurons are mapped sigmoidally for display (but not

computational) purposes.

Figure 15 illustrates a basic incremental match using IS4 links. In this example,

the model consists of a root, which specializes to a plane, which then specializes to a

prop and a jet. I.4 neurons are needed for each part at each level of specialization.

Specifically, there is a set of 5 Lagrange neurons for the specialization from root

to plane, 1 for each data stick. There are also sets of Lagrange neurons for the

specialization of plane to jet and prop, left wing to jet left wing and prop left wing,

and right wing to jet right wing and prop right wing. In the figure, the i index of

the Lagrange neuron Ac, is given by its column location. The a inaex proceeds dnwn

the hierarchy: first row is a = root, etc. Figure 15(b) shows the network after it

has settled on the solution of prop. At the solution point, all data sticks match to

root, some match to plane in a specified manner, and all match to prop in a specified

manner.

Figure 16 points out a weakness of the ISA rule. The rule relies only on local

information in its decision. For example, the selection between jet left wing and

prop left wing, and the selection between jet left tail and prop left tail are linked

only indirectly by the rectangle rule. Figure 16(b) shows a decision reached that is

consistent with the IS4 rule, but is not a valid terminal node of th.. model. This

inconsistency is avoided if the IS4 rule is reformulated as the RISA rule, where the

competition is between the sets of parts forming a model, and not its individual sticks.

All the following experiments are performed using the RISA rule. The RIS4 neurons

are displayed in the same manner described for Figure 15.

Figure 17 illustrates a basic incremental match using the RIS4 rule. The data is
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a connected assemblage of sticks (an r-stick) that perfectly matches a jet model in

this case. The individual models label the rows of the match matrix; the appropriate

r-models (and their constituents) are ROOT (root), PLANE (plane, left wing, right

wing), JET (jet, jet left wing, jet right wing, jet left engine, jet right engine), and

PROP (prop, prop left wing, prop right wing, prop left tail, prop right tail). The RISM

links are RIS4ROOT.PLANE, RIS4PLANEJET, and RI4 PLANE.PROP. The latter two

compete while the former is its own competition. If we label the sole r-stick as, for

example, 1, then the only Lagrange neurons are AROOT, and APLANEJ1. These are

displayed at the bottom of the figure.

The figure illustrates the system in terms of models, sticks, and M neurons; the r-

versions are implicit but defined as above. At first, all sticks match root hence ROOT.

The RISROOTPLANE link encourages a match to PLANE. Several components of r-

stick 1, guided by the rectangle rule, find matches to components of r-model PLANE.

Specifically, sticks 0,1,2 match plane, left wing and right wing. This in turn activates

RISM competitors PROP and JET. Through the rectangle rule, they both seek appro-

priate matches among the sticks of r-stick 1. Eventually, JET finds greater support;

PROP loses out (thus satisfying the RIS4 constraint) and the network reaches a fixed

point as shown in Fig 17(c). Among the possible matches to JET, the rectangle

rule and syntactic constraints select the correct permutation matrix, i.e. the correct

matches. In Fig 17(b), intermediate results are shown. Curiously, r-model PROP is

better matched than JET at that point in time, but loses out in the end.

Figure 18 shows a net starting from a high-energy undesirable starting position.

In this case, the match neurons from PLANE RIS4 siblings prop and JET have been

set to high value in matching the same stick. This creates an unfavorable energy
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term from the RIS4 fanout rule. The Lagrange neuron responsible for enforcing this

constraint performs a gradient ascent until the rule is enforced by suppressing the

matches to prop.

Figure 19 shows that the network is capable of performing non-terminal matches.

In this case, the data presented to the network is simply a PLANE without spe-

cializations. The RIS4 links do not proceed past PLANE since the fanout rule was

formulated as being of low energy when the fanout was M, or 0. This creates a

third-order rule but allows the existence of the two local minima needed to account

for the case of a solution as well as no solution.

Figure 20 shows that the network can recognize objects as connected subsets of

connected assemblages of sticks. In the case presented, the model to be recognized is

a JET. The data base clearly contains a JET attached to an extraneous stick. The

JET is recognized, while the match to its parent stick is not.

The next few figures show how RIS4 hiecarchies may help speed recognition. As a

minimal requirement, one might demand that a model, such as JET, may be found

more quickly if its RIS4 parent PLANE is already matched. This is indeed the

case as seen in Figure 21. Here, the network is initialized with correct matches to

ROOT and PLANE already set; the JET is found correctly in 20 time steps. If

the network is initialized to a random start, however, correct recognition of JET

takes considerably longer (70 time steps) as expected. Note here that parts of JET

common to PLANE, such as the wings, are rematched as JET is recognized. The

RIS4 hierarchy is still efficient though since the reverification of wing in a JET

context proceeds more quickly when the (easier) match of wing in PLANE context

is present.
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In the next few simulations, a database of ROOT PLANE JET is used to test

for speed comparisons. Table 1 summarizes results. Here r,p,j stand for ROOT

PLANE JET, and a capitalized version R,P,J means that the net is initialized

with the capitalized model correctly matched. The network starting positions for Rp

and Rj are shown in Figure 22. The timing values then give the number of time steps

needed for the net to stabilize. Thus, RPj = 20 implies that the net is started with

ROOT PLANE set and it takes 20 time steps to find JET. Also, Rj = 55 means

that only ROOT JET are in the model base, and 55 steps are needed to find JET

if ROOT is present. We tested the following cases: RPJ, Rpj, Rj, Rp.

RPj 20
Rpj 50
Rj 55
Rp 45

Table 1: Timing Results

Some observations are in order: As expected, RPj = 20 is much less than Rpj =

50; this is essentially the same result shown in Figure 21. In addition, Rpj = 50 is

less than Rj = 55, so the introduction of an intermediate model speeds recognition,

albeit slightly, in this case. Finally it is interesting to compare the time for a fully

parallel search, Rpj, with a "serial" search in which a net first finds PLANE only.

then uses the result as an initial condition to find JET. The appropriate comparisons

are Rpj = 50 vs. Rp + RPJ = 65, so the parallel one wins here.
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Root

0

Plane

Prop4\Jet}

Model Data

(a)

0 1 2 3 4

Root 00000

Plan 00000
Left Wing 0 000
Right Wing 00000
Jet 00000
Jet L Wing 00000
Jet RWing 00000
Jet L Engine 00000
Jet R Engine 0 0 0 0 0
Prop 00000
Prop RWng 00000
Prop LWing 00900

Prop L Tail 00000
Prop R Tail 0 0 0 00

Lagrange ISA
Construints @ EI )I

I@009I

(b)

Figure 15: ISA Incremental Match.

The net in (b) has settled on , solution to the graph matching problem

in (a). This figure illustrates the use of Lagrange neurons to enforce the

154 constraints.
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Root

0

P iano

Prop Jet

Model Data

(a)

0 2 3 4

Root O 0

Plane 00000
Left Wing 0 0 0 0 0
Right Wing 000 00
Jet 00000

JetLWing 00000

JetRwng 00000
Jet L Engine 0 0 0 0 0
Jet R Engine 0 0 0 00
Prop 00000
Prop R Wing 0 G)00 0

Prop L Wing 00000
Prop Tail 00000

Prop R Tail 0 0 0 00
Lagrange ISA
Constraints G@G

I@0@0@I
(b)

Figure 16: ISA Problem.

The net in (b) has reached a local minima that is not consistent with a

valid selection of one of the terminal models. This solution, however, is

consistent with the ISA rule, which requires a decision of which part to

activate on a local level only. This inconsistency does not occur when the

RISA rule is used.
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Planse

Model Data

0 12 34 01 23 4

Plane 0 0 00 00000
Let~g 00000 00000

Righ Wng 00 0 00000
Jotc~o 00o0oo00

Je L Vg 00 0 00000
Jet A ng 00000 00000
Jet LEngine 00000 000e0
je n 8nin 0000 00000
Prop 00000 00000
Prop R Wg 00000 00000
Pro 1L Wng 00000 00000
Prop LTail 09000 00000
Prop ATail 100000 0 00

Lagrange ISA j

(b) )

Figure 17: RISA Incremental Mr ,ch.

The net lit (c) has seatled oil a solution to the graph matching problem
in (a). An intermediate point in searching for the solution is illustrated
irt (h), where appropriate mnatches are not yet fully activatcd waid several
inapprtipriate matches are active. Thc Rl.9A selcction is guided by the
Unijue feaLUrr'9 of the spccializatjon. This figure also illustrates the usc
of Lagrange neurons to enforce the RIM constraints.
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Root

0

Plane

Prop&jX

Model Data

(a)

Root*** ** *
plane 00000 @0000

LetWig 00000 00000
RightWing 00000 00000
Jet Body 00000 @0000

Je LWig 00000 00000
JetR Wing 00000 00000
JetL Engine 00000 00000
JetR E-gpe 00000 00000
PmoBody 00000 00000
PmoLWing 00000 00000,
PmoRWing 00000 00000
Prop LTail 00000 00000
PropR Tail 00000 100000

Lagran~ge ISA

(b) (C)

Tigure 18: RIS4 hierarchy.

The net in (b), a representative of the graph matching problem illustrated
in (a). is started with the data sticks matching to both the JET and the
PROP, a violation of the R154 hierarchy rules. In (c), the Lagrange
neuron responsible for satisfying the RIS4 constraint exactly increases.
eventually forcing the matches to PROP parts to disappear.
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0 1 2

Root 0 00
Plane 000
Left Wing 000

RightWing 000
Jet Body 000

Jet L Wing 0 00
Jet RWing 000

Jet L Engine 000

Jet R Engine 0 0 0
Prop Body 0 00
Prop L Wing 0 0 0

Prop R Wing 000

Prop L Tai 000
Prop R Tail 0001

Lagrange ISA
Constraints [

(a) (b)

Figure 19: Nen-Terrminal Match.

It is not necessary to match a terminal model of the RIS4 hierarchy. The
net in (a) has matched the data in (b) to PLANE only, satisfying the
RISA hard constraints.



10 EXPERIMENTAL FESULTS 58

3 /

Model Data
Jet Jet on Stick

(a)

0 1 2 3 4 5 6 7

Root 00000000

Jet Body 00000000

Left Wing 00000000

Right Wing 00000000

JetLEngine 00000000

JetREngine 00000000

PropLTail 000000,0

Prop R Tail 00000000

(b)

Figure 20: Sub-M, tch.

It is possible to match a subbet of a connected assemblage of data sticks
to a model. Here, the model JET is recognized in a subsection of the
data base. There is no specialization hierarchy here.
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0 1 2 3 4 0 1 2 3 4

Root 00000 00000

Plane 00000 00000

Left Wing 00000 00000

Right Wing 00000 00000

Jet Body 00000 00000

JetLWing 00000 00000

JetRWing 00000 00000

JetLEngine 00000 00000

JetREngine 00000 00000

Prop Body 00000 00000

Prop L Wing 00000 00000

Prop R Wing 00000 00000

PropLTail 00000 00000

PropRTail 00000 00000

Lagrange ISA
Constraints [

(a) (b)

Figure 21: Partial Information.

The matching problem in Figure 18 is started with the M match neurons
to ROOT and to the subparts of PLANE set to active. The network
quickly settles on the correct solution of Jet within 20 time steps, being
driven by the RIS4 link from PLANE. When a JET is matched to JET
with ROOT but not PLANE set, not depicted, the network requires 50
time steps to converge to a solution.
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Root Root

Plane Jet

0 1 2 3 4 0 1 2 3 4

Root 00000 Root 00000

Plane 00000 Jet 00000

Left Wing 00000 Left Wing 00000
Rht'Wing 00000 RghtWing 00000

JetL Tail 00000
JetR Tail _000001

Lagrange ISAI®I Lagrange ISAI®-
Constraints Constraints

(a) (b)

Figure 22: Initial Starting Positions.

Both (a) and (b) show the initial starting positions for the models
PLANE and JET. Both are being matched to a data base contain-
ing a JET, and are started with the matches to ROOT set to active, Rp
and Rj.
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10.2 Learning Results

In this section learning of the fit parameters F was implemented. The fixed equation

previously employed,

Ff usc1lge,win ( P4.1 ( 4,1 - r Uselagewing)/Orfuseiagewng )2 )/( IVAftiselage, 3)

was replaced by a function generated by back-propagation Gaussian neural networks,

previously described. Separate neural networks of the form shown in figure 13 were

created for each pair (a, 3) of model parts to be matched. Each contained from

1 to 25 hidden-layer neurons, each with a set of w,77, A. The parameters w, 7 ,A

contained initial small random starting values, chosen so that without learning the

default output of the network is a near-zero value for any input. This creates a F

which discriminates against all matches unless learning has occurred to modify the

default response. Learning networks with more hidden-layer neurons allowed more

complex learning functions to be generated.

Positive and negative training data of each pair of parts were presented to the

training networks, along with the desired output of the learning network. For positive

examples, th,_ desired output is I (good match), for negative examples, the desired

output is 0 (bad match). This process allowed the function F3 to be generated

specifically for each pair a3.

In figure 23 (a), a model and two possible training examples are shown. These

examples are used to generate the function F shown as the solid line in figure 23

(b). The dotted line in the same figure shows the previously employed fixed F.

The difference (1) noted in (b) allowes the matching neural network to discriminate

between the good and poor matches in (a) uhin8 the learned F, which is more difficult
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with the smaller difference (2) with the fixed F. The learning function is not limited

to generating a F with a single Gaussian-type peak. The complexity of the generated

function depends to some extent on the numbers of hidden-layer neurons. An example

of this is shown in figure 23 (c), where a F has been generated to match obtuse and

sharp angles, while not responding to intermediate angles.
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Model I ood Fit Bad Fit

(a)

Gcodress

/ _ j(2)

bdftParameter Variation

good f it

(b)

Coodress
of

bad fit Parameter Variation

good fit good fit

(c)

Figure 23: Learning Examples.
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11 Discussion

In Stickville, we implement a model-bascd object-recognition system as a neural net-

work. The network architecture is specified by a third-order objective function, and

dynamics derive from standard optimization techniques. The system is "neural"

in that a relatively complex calculation is carried out as an analog collective com-

putation of very simple processing elements (neurons) and, at worst, multiplicative

connections. The system could presumably be implemented in hardware directly as

an analog circuit. (Here we instead simulate the system on an ordinary workstation.)

Other hallmarks of neural nets are learning and fault tolerance. Neither of these

features are addressed here, although, as discussed previously, the Stickville net might

support the learning of match metrics F(P). Fault tolerance derives from distributed

representations in which information is shared among many neurons. In our case,

each "unit" of information, namely Ai, is associated with a single neuron in a

unary representation. If the neuron or connection to it fails, then the information is

lost. Simple tricks like duplicating units can lead to fault tolerance, but distributed

representations may have other advantages [11].

Related to our unary representation is the problem of node proliferation. For N

sticks and M models and an average fanout of f for INA, ina links, there are NM

neurons and O(NMf') wires, clearly a huge number when we expect only O( N )

neurons to be active at the fixed point. It may be possible to greatly reduce the

size of the net by transforming the objective function into one which has the same

fixpoints but requires less hardware [12].

From the standpoint as a vision system, the task tackled here greatly extends

simple recognition strategies, such as template matching, employed in various guises
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by other neural nets. It falls short in other respects, though. The data organization

(na links) are presumed known ahead of time, but a vision system would have to

compute these dynamically. (In some real vision applications, this grouping on the

data side can indeed be done as a preprocess.) The match metrics Fo (/gj) should

also be computed as needed with parameters of the abstraction computed along the

way. In fact, objective functions may be specified to do this [7], and experiments were

carried out in simple domains that incorporated these features [9], but these achieved

limited success. The reasonably successful results for Stickville are encouraging in

this light.

A few interesting sidelights are found in Stickville. Because we need to match un-

equal numbers of parts and models, a novel third-order energy function is formulated

to solve this "partial match" problem. In simulations, it works quite well for problems

that depend linearly on the data. The use of Lagrange multiplier neurons allowed the

introduction of hard constraints within a Hopfield-style network. Such constraints

allowed constraints with limited scope (the IS4 specialization hierarchy) to be held

exactly at the solution, while removing the need to select weighting coefficients. The

binary constraint rule was implemented as a penalty term in the experiments pre-

sented here. It was not implemented as a Lagrange term since each neuron would

require its own Lagrange neuron, effectively doubling the size of the network. Strictly

speaking it should be implemented as a Lagrange term since the penalty method only

reduces the likelihood of selecting a minima within the solution space. This did not

appear, however, to be a problem with the results presented here.

One might expect that the hierarchical orguinization of the database would pro-

mote rapid and correct matches. The results with IS4 hierarchies are so far equivocal,
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however. The use of an IN4 hierarchy with mainpart abstraction seems to work well

as shown in results. For an object of n parts and models, a naive pairwise relational

match requires n4 "rectangles" as opposed to n2 for the INA na scheme used here.

On the other hand, one might expect the use of an IS4 hierarchy to promote rapid

and correct matches. The use of IS4 links allows partial information about data ob-

jects to be stored. Such information then directs further matching, leading to faster

convergence. The preliminary results show some advantage in using IS4 links, but

more work is needed.

In summary, Stickville implements in a neural network important aspects of a

general recognition strategy as outlined in [7]. Further progress here should be helpful

in realizing networks of some consequence for solving real vision problems.
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